
1.  Introduction
The atmospheric circulation over the tropical Pacific couples intense turbulent ascent in the west to slow stable 
descent in the east. Over the western tropical Pacific, horizontally extensive ice clouds, known as anvil clouds, 
cap deep tropical cumuliform clouds and cover a much larger fraction of the troposphere than their lower-level 
cloud cores. These optically thick cores are Earth's most reflective clouds and thereby represent a significant 
negative contributor to the planetary energy budget. Above them, the cold anvil clouds have a correspondingly 
strong positive contribution to the energy budget by absorption of longwave radiation (Hartmann & Berry, 2017). 
In the east, shallow stratocumulus clouds mark the vertical boundary between the warm descending air of remote 
origin and shallow local overturning cells (Wood & Bretherton, 2006). These clouds are highly reflective to 
incoming shortwave radiation, but due to their low altitude and low cloud top temperatures relative to the surface, 
they have negligible effects on outgoing longwave radiation. The mechanisms governing these two contrast-
ing cloud types are the dominant sources of uncertainty in assessments of Earth's climate sensitivity (Forster 
et al., 2021; Sherwood et al., 2020), a “multi-trillion-dollar” research question (Hope, 2015).

The notion of precipitation efficiency (PE) represents the fraction of condensate to fall to the surface as precipi-
tation, the residual condensate being left behind in the form of clouds. Structurally PE is related to the complex 
microphysical processes that govern the growth of ice crystals and cloud droplets (Stevens & Feingold, 2009) 
which can reach the surface as precipitation particles. Thermodynamically, PE represents the fractional latent 
heat release of atmospheric convection. The other fraction of the total condensate re-evaporates, thereby reab-
sorbing the latent heat released in the original condensation. This links PE to the net energetics of deep convec-
tion and thereby to convective updraft strength (K. Emanuel, 2019). The mechanisms which set PE largely depend 
on the humidity of the atmosphere in regions of precipitation. This follows from droplets falling through humid 
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Plain Language Summary  Precipitation efficiency (PE) is the ratio of precipitation to cloud 
condensate. Evidence from the great majority of cloud-resolving models and many earth system models 
support higher PE with warming. With higher PE, more cloud condensate leaves the atmosphere as 
precipitation, reducing cloud cover and optical thickness. As PE is tightly linked to the latent heat release of 
tropical convection, an atmosphere with high PE and a weak circulation can release the same latent heat as its 
counterpart with low PE and strong circulation. Increasing PE is robustly correlated with pan-tropical positive 
cloud feedback in the equatorial Pacific, namely thinner stratiform anvil clouds in the west and suppressed 
stratocumulus cloud cover in the east. Hence, quantifying PE change is critical for climate projections.
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air evaporating less than when falling through drier air (Houze, 2014). However, PE also depends on droplet 
size, local air temperature and other factors. For example, although tropical mean relative humidity is expected 
to be constant under greenhouse warming, recent cloud-resolving model (CRM) studies suggest higher PE in 
warmer climates due to increasing cloud density (Lutsko & Cronin, 2018) and convective organization (Bao & 
Sherwood, 2019; Fildier et al., 2021).

While other factors influencing atmospheric convection at a range of scales have been studied extensively, such 
as sea surface temperatures (SSTs; Emanuel et al., 1994) and free tropospheric humidity (Bretherton et al., 2004; 
Held & Soden, 2006), the role of PE is poorly understood. This is partly the result of PE being extremely difficult 
to measure because of the microphysical nature of rain formation, cloud condensation, and evaporation (Lutsko 
et al., 2021). It is also the result of definitions and representations of PE varying immensely across observational 
and modeling studies (Sui et al., 2020), making them difficult to synthesize. As a consequence, the role of PE 
in setting Earth's climate sensitivity is yet to be firmly established. Previous work (Li et al., 2019; Mauritsen 
& Stevens, 2015; Sherwood et al., 2014; Zhao, 2014) has proposed somewhat conflicting mechanisms through 
which PE might impact Effective Climate Sensitivity (ECS) but evidence to support these hypotheses is incon-
sistent across different global climate models (GCMs; see Lutsko et al. (2021) for a review). While simulated 
cloud responses from imposed PE changes are structurally complex and model dependent, reduction in cloud 
liquid and ice water path (i.e., the vertically integrated liquid and ice within an atmospheric column) at higher PE 
is unequivocal (Li et al., 2019; Mauritsen & Stevens, 2015; Zhao, 2014). Reductions in cloud liquid and ice in 
anvil clouds can contribute to positive cloud feedback due to reduced albedo.

In the present study we quantify PE using a parameter ϵ defined as 𝐴𝐴 𝐴𝐴 = 𝑃𝑃𝑠𝑠∕CWP , where 𝐴𝐴 𝐴𝐴𝑠𝑠 is surface precipitation 
and CWP is condensed water path (Methods; Li et al., 2022). PE is often defined as a fraction of unity by normal-
izing 𝐴𝐴 𝐴𝐴𝑠𝑠 to a measure of condensation rate, such as the ratio of 𝐴𝐴 𝐴𝐴𝑠𝑠 to condensation in the atmospheric column. 
However, local condensation is difficult to measure and compute, which leads to a wide range of PE estimates 
from 0.1 to greater than 1.0 (Sui et al., 2020). Vigorous hydrological cycling of the atmosphere requires that 
condensation constantly replenishes the relatively small stock of CWP, and so variations of condensation rate and 
CWP are closely related (Li et al., 2022). Thus, the parameter 𝐴𝐴 𝐴𝐴  , which is tightly correlated with microphysical 
measures of PE, captures microphysical cloud condensation at the macrophysical scale and is indeed a measure of 
PE (Li et al., 2022). Unlike other existing PE metrics, ϵ enables comparable estimates of PE across observations, 
CRMs and GCMs. For the remainder of this study, we use ϵ and PE interchangeably, and compute climatological 
ϵ to represent the net effect of different cloud regimes, from deep convective clouds to non-precipitating shallow 
clouds, within the tropical cloud ensemble.

The goal of the study is to quantify and explain the effect of PE on the planet's equilibrium temperature response 
after greenhouse gas increases. Investigating cloud-resolving simulations in the Radiative-Convective Equilib-
rium Model Intercomparison Project (RCEMIP; Wing et al., 2020), we find that they imply PE should increase 
with warming. To understand what this means for climate sensitivity, we then analyze 𝐴𝐴 𝐴𝐴  in 35 GCMs participating 
in Phase 6 of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016). Using these GCMs we 
identify two key components linking increasing PE with the resultant warming: (a) high cloud feedback associ-
ated with retreat and thinning of convective anvils over the western tropical Pacific and (b) low cloud feedback 
resulting from suppression of stratocumulus decks in the eastern tropical Pacific. These mechanisms are linked 
via the magnitude of Pacific Walker circulation slowdown, whereby higher PE with greenhouse warming ampli-
fies circulation weakening. The positive feedback mechanisms (a) and (b) act to amplify the overall warming 
leading to a higher climate sensitivity, while a stronger eastern equatorial Pacific warming pattern mirrors the 
greater slowdown of the Walker circulation.

2.  Materials and Methods
2.1.  Precipitation Efficiency Measure

We use the measure of PE:

𝜖𝜖 =
𝑃𝑃𝑠𝑠

CWP
,� (1)

where 𝐴𝐴 𝐴𝐴𝑠𝑠 is the surface precipitation rate and 𝐴𝐴 CWP is vertically integrated condensed water and ice in the atmos-
pheric column. 𝐴𝐴 𝐴𝐴  has high correspondence with the microphysical definition of PE (Li et al., 2022). 𝐴𝐴 𝐴𝐴  is computed 
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at each grid and then averaged, with the exception of CRM data where 𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 CWP are averaged over the whole 
domain prior to calculating their ratio. PE's inverse 𝐴𝐴 𝐴𝐴

−1 = 𝜏𝜏𝑐𝑐 is a characteristic residence timescale for the total 
condensed cloud water across an ensemble of cloud types. 𝐴𝐴 𝐴𝐴𝑐𝑐 is a characteristic drying timescale for the atmos-
phere if condensation has stopped, where high 𝐴𝐴 𝐴𝐴  is equivalent to low 𝐴𝐴 𝐴𝐴𝑐𝑐 signaling shorter residence time of clouds 
and high precipitation efficiency. The exclusive use of macrophysical variables enables consistent 𝐴𝐴 𝐴𝐴  data in 
CRMs, GCMs and observations.

In GCMs, changes in 𝐴𝐴 𝐴𝐴  with surface temperature increase is determined by the representation of deep convec-
tion within the models, namely whether convective rainout is a function of vertical mass flux (Li et al., 2022). 
While models with positive 𝐴𝐴 𝐴𝐴  sensitivity to temperature generally show decreases in 𝐴𝐴 CWP and higher fractional 
increases in 𝐴𝐴 𝐴𝐴𝑠𝑠 , the difference in 𝐴𝐴 𝐴𝐴  sensitivity cannot be explained by 𝐴𝐴 𝐴𝐴𝑠𝑠 nor 𝐴𝐴 CWP alone. Rather, differences in the 
greenhouse warming response of 𝐴𝐴 𝐴𝐴  encapsulates a wide range of 𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 CWP perturbations (Figure 1a and Figure 
S1 in Supporting Information S1). The origin of different GCM behavior is due to differences in the convective 
precipitation formulation.

2.2.  Cloud Resolving Model Estimates of 𝑨𝑨 𝑨𝑨

We use results from the CRM experiments in the RCEMIP, which are run on a doubly-periodic domain with 
perpetual sunlight, fixed and uniform SSTs, and no rotation (Wing et al., 2020). Small domain simulations use 
a square domain of 100 km by 100 km and a horizontal resolution of 1 km. Large domain simulations employ a 
channel geometry of 400 km by 6,000 km with 3 km horizontal resolution, allowing the possibility of convective 
organization. To compute 𝐴𝐴 𝐴𝐴  , we use domain-averaged diagnostics of precipitation and condensed water path for 
small and large domain simulations at 295, 300, and 305 K SSTs provided by Dr. Allison Wing. Fractional change 
in 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 Δ𝜖𝜖∕𝜖𝜖 , for each model is computed relative to the 295 K SST simulation.

Figure 1.  High-resolution model ensemble indicate positive ϵ sensitivity. Change in precipitation efficiency 𝐴𝐴 Δ𝜖𝜖 versus Sea 
Surface Temperature (SST) simulated in (a) small and (b) large domains by large-eddy simulations, cloud-resolving models, 
single-column models, and general circulation models participating in the RCEMIP. Units are indicated in square brackets. 
Among the 36 small and 28 large domain experiments available, 32 small domain models and 26 large domain models show 
increasing PE with warming. Change is relative to the 295 K simulation. Diamonds show median 𝐴𝐴 𝐴𝐴  sensitivity across all 
models.
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2.3.  CMIP6 Data

Thirty-five models from CMIP6 are used in this study to compute 𝐴𝐴 𝝐𝝐 , all models with available output in the 
CMIP6 data repository in both the preindustrial control (piControl) and abrupt quadrupling of atmospheric CO2 
(abrupt-4xCO2) scenarios. Environmental metrics and sensitivity of 𝐴𝐴 𝝐𝝐 to greenhouse warming is defined as the 
change in 𝐴𝐴 𝝐𝝐 spatially averaged from 30°S to 30°N and monthly data temporally averaged over the final 50 years 
in abrupt-4xCO2 relative to piControl.

2.3.1.  Models With Negative 𝑨𝑨 𝑨𝑨 Sensitivity (Total 11)

AWI-CM-1-1-MR, CAMS-CSM1-0, FGOALS-g3, GFDL-CM4, GFDL-ESM4, GISS-E2-1-G, GISS-E2-1-H, 
GISS-E2-2-G, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-2-LR.

2.3.2.  Models With Positive 𝑨𝑨 𝑨𝑨 Sensitivity (Total 24)

BCC-CSM2-MR, BCC-ESM1, CESM2, CESM2-FV2, CESM2-WACCM, CESM2-WACCM-FV2, CIESM, 
CMCC-CM2-SR5, CMCC-ESM2, CanESM5, E3SM-1-0, EC-Earth3-AerChem, IITM-ESM, INM-CM4-8, 
INM-CM5-0, IPSL-CM5A2-INCA, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, MRI-ESM2-0, NorESM2-LM, 
NorESM2-MM, SAM0-UNICON, and TaiESM.

3.  Results
3.1.  Sensitivity of 𝑨𝑨 𝑨𝑨 to Temperature in Convection-Permitting CRMs

We begin by considering PE's relationship with surface temperature in 36 models participating in the 
RCEMIP. These experiments are separated into two domain sizes: “small” defined as 100 × 100 km 2 and “large” 
defined as 400 × 6,000 km 2. Convective self-aggregation is for the most part absent in the small domain simu-
lations but is present in the large domains. The great majority of RCEMIP models predict increasing PE with 
warming (Figure 1): 32 out of 36 models in the small domain experiments and 26 out of 28 models in the large 
domain experiments. The median estimates for 𝐴𝐴 𝐴𝐴  sensitivity, 𝐴𝐴 4.5%K−1 in small domains and 𝐴𝐴 3.3%K−1 in large 
domains, agree with estimates from positive 𝐴𝐴 𝐴𝐴  sensitivity GCMs under gradual greenhouse forcing which range 
from 𝐴𝐴 1 to 𝐴𝐴 5%K−1 (Li et al., 2022). These findings bolster previous single model results that indicated PE will 
increase with warming (Bao & Sherwood, 2019; Lutsko & Cronin, 2018).

3.2.  Link Between 𝑨𝑨 𝑨𝑨 and Tropical Cloud Feedback in CMIP6

Since cloud-resolving models imply PE increases with warming, we then investigate the significance of this 
change for large-scale climate. To do this we separate CMIP6 GCMs into two groups based on the sign of the 
models' tropical-mean ϵ change following increased atmospheric CO2 concentrations (Materials and Methods). 
These ϵ changes, defined at each grid, are subsequently referred to as ϵ sensitivity. Applying this separation crite-
rion cleanly divides CMIP6 models into two sets (Figure 2a). Dividing these models on either the precipitation 
sensitivity or CWP sensitivity alone does not yield two distinct groups of models. This clean PE separation was 
traced to the GCMs' choice of convection parameterization (Li et al., 2022).

Spatial differences in ϵ changes between the two model groups are prominent throughout the tropics and in heavy 
precipitation regions (Figures 2b and 2c). The sign of models' overall ϵ sensitivity matches up with the sign of the 
ϵ change in the Indo-Pacific warm pool (WP; defined as the overlain box in Figure 2b between 20°S–20°N and 
80°E–180°E). In the equatorial Eastern Pacific (EP; 30°S–30°N and 80°W–180°W), ϵ increases in both model 
groups but in models with positive ϵ sensitivity this ϵ increase is twofold greater than in models with negative ϵ 
sensitivity.

We find that 𝐴𝐴 𝐴𝐴  sensitivity is proportional to the local net cloud feedback in both the WP and EP (𝐴𝐴 𝐴𝐴 = 0.60 and 
𝐴𝐴 0.51 respectively; Figure 2d). In positive 𝐴𝐴 𝐴𝐴  sensitivity models, the net WP cloud feedback is dominated by the 

shortwave component and only partially compensated in the longwave (Figure S2 in Supporting Information S1), 
resulting in a net positive cloud feedback compared to negative 𝐴𝐴 𝐴𝐴  sensitivity models. The dominance of the 
shortwave feedback in this group of GCMs means that the sign of the overall WP cloud feedback opposes the sign 
expected by the proposed infrared iris effect (Mauritsen & Stevens, 2015). This is in agreement with results of 
other GCM sensitivity studies that imposed higher convective rainout and consequently higher PE (Li et al., 2019; 
Zhao, 2014). This PE–cloud feedback relationship suggests a mechanism whereby enhanced convective rainout 
limits detrainment and the reduced anvil cloud source results in their contraction and thinning.
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The similar correlation magnitudes between 𝐴𝐴 𝐴𝐴  sensitivity and net cloud feedback in both the WP and EP hint at a 
mechanistic link coupling the cloud feedbacks across the entire Pacific (Figure S4 in Supporting Information S1). 
The net cloud feedback difference over the EP between GCMs with positive versus negative 𝐴𝐴 𝐴𝐴  sensitivity is also 
dominated by the shortwave component (𝐴𝐴 1.18Wm−2 K−1 , Figure S2 in Supporting Information S1). Additionally, 
this is slightly offset by a longwave component (𝐴𝐴 − 0.36Wm−2 K−1 ), and sums to a net value of 𝐴𝐴 0.82Wm−2 K−1 .

Consequently, CMIP6 models with positive 𝐴𝐴 𝐴𝐴  sensitivity exhibit stronger positive cloud feedbacks in both the WP 
and EP relative to their counterparts with negative 𝐴𝐴 𝐴𝐴  sensitivity (Figure S2 in Supporting Information S1). In the 
average over the entire tropics, the net cloud feedback difference between the two model groups is 𝐴𝐴 0.49Wm−2 K−1 

Figure 2.  Impact of the disagreement of precipitation efficiency sensitivity in CMIP6. (a) Sensitivity of tropical 𝐴𝐴 𝐴𝐴  , 
precipitation (𝐴𝐴 𝐴𝐴𝑠𝑠 ), and condensed water path (𝐴𝐴 CWP ) to greenhouse warming for two groups of climate models: with positive 
(red) and with negative (blue) sensitivities of tropical-mean (30°S–30°N) 𝐴𝐴 𝐴𝐴  to greenhouse warming. (b, c) Spatial maps of 
multi-model mean 𝐴𝐴 𝐴𝐴  sensitivity for models with positive and with negative 𝐴𝐴 𝐴𝐴  sensitivities, respectively. Stippling in (b, c) 
indicates more than 75% of models agree on the sign of the response. Green contours outline regions with 6 mm per day or 
more surface precipitation in the annual mean. (d) Net cloud feedback estimated over the Indo-Pacific Warm Pool (WP; black 
box in panel b; circles) and over the Eastern Pacific (EP; diamonds) scattered against tropical 𝐴𝐴 𝐴𝐴  sensitivity to greenhouse 
warming for different models. The solid and dashed lines represent linear regressions for WP and EP data, respectively, where 
r is the Pearson correlation coefficient and p is the associated p value. Overall, higher values of cloud feedback correspond to 
positive 𝐴𝐴 𝐴𝐴  sensitivity. See Methods for CMIP6 model and simulation details.
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(Figure S2a in Supporting Information S1). This net feedback is the sum of larger positive shortwave feedback 
𝐴𝐴

(

0.89Wm−2 K−1 , Figure S2b in Supporting Information S1) being partly compensated by smaller negative long-
wave feedback 𝐴𝐴

(

−0.40Wm−2 K−1 , Figure S2c in Supporting Information S1). A decomposition analysis by cloud 
height (Methods) reveals the dominant contributions come from medium and high clouds in the WP and low 
clouds in the EP (Figure S3 in Supporting Information S1). The WP medium and high net cloud feedback of 

𝐴𝐴 0.40Wm−2 K−1 (Figure S3a in Supporting Information S1) and the EP low cloud net feedback of 𝐴𝐴 0.51Wm−2 K−1 
(Figure S3d in Supporting Information  S1) are tightly linked (correlation coefficient 𝐴𝐴 𝐴𝐴 = 0.64 , Figure S4 in 
Supporting Information S1).

3.3.  Walker Circulation Slowdown, Anvil Cloud Reduction and Stratocumulus Suppression

We connect this array of cloud feedback differences across the Pacific to the concomitant enhanced slowdown 
of the Walker circulation in positive versus negative ϵ sensitivity GCMs (Figure  3). The differences in the 
large-scale circulation slowdown are statistically significant in the ascending WP and subsiding EP (Figure 3f). 
In the convectively active WP, anvil cloud fraction reduces as the planet warms and the large-scale circulation 
slows (Figures 3a and 3b), a feature of both groups of GCM simulations. The reduction of cloud cover peaks 
near the climatological anvil cloud maximum at 120°E and 200 hPa, where there is a strong difference in the 
magnitude of this effect between positive (15%) and negative (5%) ϵ sensitivity models (Figure 3c). From the 
top of the atmosphere, these simulated changes appear as a contraction in the area covered by anvil clouds as 
well as thinning (Figure S5 in Supporting Information S1) since the clouds are less opaque to sunlight. In the 
EP, the radiatively bright stratocumulus clouds are capped from above by the descending branch of the Walker 
circulation. In our results, associated with the enhanced large-scale circulation slowdown in positive ϵ sensitivity 
models, these EP stratocumulus decks are suppressed (Figure 3c). This triggers a very strong local shortwave 
cloud feedback (Figure S3c in Supporting Information S1). We think this is very likely the dominant cause of the 
enhanced southern hemisphere Eastern Pacific SST warming (Figure 3i).

The Walker circulation weakening being effectively controlled by PE change can be qualitatively interpreted 
by first considering the energetic constraint on vertical mass flux in the tropical atmosphere. In Held and 

Figure 3.  Contraction and thinning of deep convective anvil clouds, low stratocumulus cloud suppression, Walker circulation weakening, and enhanced Eastern Pacific 
warming. Changes in cloud areal coverage (cloud fraction) along the equator in response to greenhouse warming in (a) positive and (b) negative ϵ sensitivity models, 
and (c) the difference between the two, that is, panel (a) minus panel (b). (d–f) As the left column but for changes in vertical pressure velocity. (g–i) As the left column 
but for changes in sea surface temperature. Black contours in (a–f) show multi-model mean preindustrial climatology. In the titles of panels, square brackets indicate 
the tropical mean SST (30°S–30°N) and round brackets indicate the number of models. Stippling indicates more than 75% of models agree on the sign of the response; 
hatching shows p-value less than 0.05 using Welch's t-test. Cloud fraction is given in % spatial coverage, velocity in 10 −2 Pa per second, and SST in K. Experiments 
with abrupt quadrupling of atmospheric CO2 relative to preindustrial control have been used. For the left and middle columns, the data is averaged between 5°S–5°N.



Geophysical Research Letters

LI ET AL.

10.1029/2022GL100836

7 of 10

Soden (2006), their original constraint 𝐴𝐴 𝐴𝐴 = 𝑀𝑀𝑀𝑀 , where P is surface precipitation, M is the mass flux exchange 
between the boundary layer and free troposphere, and q is specific humidity. Taking the differential leads to

𝑑𝑑𝑑𝑑

𝑀𝑀
=

𝑑𝑑𝑑𝑑

𝑃𝑃
−

𝑑𝑑𝑑𝑑

𝑞𝑞
,� (2)

where changes in the mass flux are constrained by changes in precipitation and specific humidity. Per degree K 
of warming, specific humidity increases by about 7%, following the Clausius-Clapeyron relation, while precipi-
tation increases by roughly 2%, constrained by infrared radiation increase. This implies that the vertical mass flux 
should decrease by about 5%. The Walker circulation slowdown with global warming is qualitatively consistent 
with this argument, though actual numbers may differ depending on the metric. Now adding PE to this relation 
yields 𝐴𝐴 𝐴𝐴 = 𝜖𝜖𝑚𝑚𝑀𝑀𝑀𝑀 , where 𝐴𝐴 𝐴𝐴𝑚𝑚 is the dimensionless microphysical PE (i.e., surface precipitation over vertically inte-
grated condensation rate; Lutsko & Cronin, 2018; Sui et al., 2020). Taking the differential again yields

𝑑𝑑𝑑𝑑

𝑀𝑀
=

𝑑𝑑𝑑𝑑

𝑃𝑃
−

𝑑𝑑𝑑𝑑

𝑞𝑞
−

𝑑𝑑𝑑𝑑𝑚𝑚

𝜖𝜖𝑚𝑚
,� (3)

where changes in PE also contribute to changes in the vertical mass flux. If PE decreases with global warming, 
the vertical mass flux can decrease less. If PE increases, the mass flux has to decrease more, which implies an 
enhanced weakening of the Walker circulation.

With enhanced Walker circulation slowdown by increasing PE, the equatorial surface easterlies are correspond-
ingly weakened (Figure S6 in Supporting Information S1). It thus follows that this reduced wind stress dampens 
the climatological oceanic upwelling at the equator and off South America's western coast. This second order 
effect of increasing PE is evident in an El Nino-like SST warming pattern (Figure 3i). This adds to the Eastern 
Pacific warming caused by the local stratocumulus suppression. In addition to these two effects, warmer SSTs 
and weaker surface temperature inversion (Figure S7 in Supporting Information S1) create less favorable condi-
tions for stratocumulus decks (Wood & Bretherton, 2006). Amplification of these effects in positive ϵ sensitivity 
GCMs further contributes to the reduction of low clouds and thus establishes the positive cloud feedback in the 
EP (Figure S3e in Supporting Information S1).

Tropical ϵ is associated with shallow and deep convection. Given that climatological deep convection in the WP 
is strongest, one might hypothesize that it is the driver of PE's influence. However, WP anvil clouds have cold 
cloud tops, and reduced fractional cover accompany local negative longwave feedback (Figure S3c in Supporting 
Information S1). This partly compensates the positive shortwave feedback (Figure S3b in Supporting Informa-
tion S1) and thus dampens the net anvil cloud feedback (Figure S3a in Supporting Information S1). On the other 
hand, PE changes on annual and longer decadal time scales are also strong in positive ϵ sensitivity models in the 
low cloud dominant EP (Figure 2b). This could be explained by changes in transient deep convection in the EP 
or more strongly precipitating shallow convection. PE's influence is pan-tropical and profoundly coupled to the 
clouds and convective circulation.

The Walker circulation connects a diverse array of tropical cloud regimes. In the WP, positive anvil cloud feed-
back amplifies the local warming, which is enhanced at higher altitudes by moist adiabatic adjustment (Figure 
S8 in Supporting Information S1). As the weak effective planetary rotation cannot sustain horizontal temperature 
gradients (Sobel et  al.,  2001), PE induced changes in the WP is communicated throughout the tropics. With 
higher PE, measured by increased ϵ, updrafts become more efficient, wherein a weaker circulation sustains the 
same latent heating (Figures 3d–3f). The Walker circulation bridges the WP and EP cloud feedback, and, under 
greenhouse warming, increasing ϵ causes greater Walker circulation slowdown, amplifying the positive cloud 
feedback.

3.4.  PE's Link to Climate Sensitivity

Collectively these results reveal that the integrated links between enhanced large-scale circulation slowdown 
and the cloud changes across the Pacific associated with PE changes result in an overall positive cloud feedback. 
This suggests that PE amplifies warming following increases in greenhouse gases. We quantify this effect by 
considering these models ECS values and find that positive ϵ sensitivity is a necessary but insufficient condition 
for high ECS (Figure 4a). In the 24 out of the total 35 CMIP6 GCMs which match the cloud-resolving models 
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in simulating increasing PE with greenhouse warming, mean ECS is 1 K higher than in GCMs in which PE 
decreases. While models with positive ϵ sensitivity exhibit both high and low ECS estimates, all negative ϵ sensi-
tivity models have low end ECS. Moreover, all GCMs with ECS greater than 4 K (10 of 35 models) have positive 
ϵ sensitivity (Figure 4a).

We decompose ECS into its individual feedback components to confirm that the above mentioned ECS differ-
ences are dominated by tropical clouds. Among all possible feedbacks, only assuming zero cloud feedback 
results in the two model groups becoming statistically indistinguishable (Figure 4b). Furthermore, the two model 
groups become statistically indistinguishable in a separate ECS calculation assuming zero tropical cloud feedback 
(Figure 4a). When tropical clouds are excluded from the ECS calculation, all ECS estimates above 4 K disappear, 
affirming the critical importance of tropical cloud feedback for very high climate sensitivity. We note here that 
the relationship is significantly weaker between the magnitude of tropical-mean PE and ECS.

4.  Discussion
In this study we use a macrophysical PE measure 𝐴𝐴 𝐴𝐴  , the ratio of surface precipitation to condensed water path, to 
investigate the climate implications of PE change with global warming. We have shown that the vast majority of 
CRMs suggest that the PE of deep convective clouds will increase under anthropogenic climate change. These 
multi-model RCEMIP results agree with recent single model CRM studies (Bao & Sherwood,  2019; Lutsko 
& Cronin, 2018). Lutsko and Cronin (2018) found that at higher surface temperatures, denser clouds support 
higher fractional rainout. Re-evaporation of rain is also reduced at warmer temperatures (Emanuel et al., 2014). 
Moreover, GCMs predict that changes in the large-scale tropical circulation pattern with warming will increase 
rainfall unevenness (Zhang & Fueglistaler, 2019), that is, there is more convective organization. Further, satellite 
records, albeit short, show tentative signs that these anticipated changes in ϵ are already appearing (Figure S9 in 
Supporting Information S1). This may be the result of increases in the frequency of organized deep convection in 
the 21st century as recently identified in satellite observations (Holloway et al., 2017; Tan et al., 2015).

Figure 4.  Role of tropical cloud feedback in ECS spread. (a) The Net feedback (sum of all individual climate feedbacks) 
and Cloud feedback for 35 GCMs employed in this study. The Cloud feedback is decomposed into contributions from 
tropical clouds (30°S–30°N; 𝐴𝐴 CloudTropics ) and extratropical clouds (90–30°S and 30–90°N; 𝐴𝐴 CloudExtratropics ). Effective Climate 
Sensitivity (𝐴𝐴 ECS ) is defined as the effective radiative forcing of CO2 doubling divided by the net climate feedback parameter 
(Zelinka et al., 2020). The multi-model mean ECS for positive and negative 𝐴𝐴 𝐴𝐴  sensitivity models are 𝐴𝐴 3.84K and 𝐴𝐴 2.91K , 
respectively. A hypothetical ECS estimate that assumes zero tropical cloud feedback (𝐴𝐴 ECSNoCloudTropics ) is also provided. 
(b) The Net feedback with each individual feedback component removed: water vapor and lapse rate (noWvLr), albedo 
(noAlbedo), Planck (noPlanck), and cloud (noCloud). Without cloud feedback, the feedback parameters are indistinguishable 
from the residual term in the linear framework. Units are given in square brackets.



Geophysical Research Letters

LI ET AL.

10.1029/2022GL100836

9 of 10

The amplified Walker circulation slowdown in models with increasing PE is coupled to the development of a 
stronger eastern equatorial Pacific warming pattern (Figures 3g–3i). This pronounced El Niño-like mean pattern, 
extending from the eastern Pacific to the dateline along the equator (DiNezio et al., 2009; Xie et al., 2010), 
is projected to emerge with future warming but its strength varies greatly across the models (Heede & 
Fedorov, 2021). Thus, the PE considerations provide a potential constraint on the strength of this pattern in the 
future.

Projecting the radiative effects of Earth's deep convective anvils in different climates has been a major challenge. 
It remains unclear why the net radiative effect of anvils is near neutral in the present day because these clouds 
are strongly influenced by processes that remain unresolved in contemporary models (Wall et al., 2019). Never-
theless, in a warmer climate, high clouds remain near the same temperature and thus rise in altitude (Norris 
et al., 2016). As the clouds rise, temperature stratification increases, and this may result in less mass divergence 
from convective updrafts. This thermodynamic effect has been hypothesized to reduce tropical high cloud cover 
(Bony et al., 2016). While we have verified that this effect is indeed present in the CMIP6 models, we find that 
it is independent from the PE–climate sensitivity mechanism identified in this work (Figure S10 in Supporting 
Information S1).

While the present analysis focuses on the role of PE and deep convection in circulation weakening and cloud 
feedback, shallow convection plays a major role in regulating humidity and precipitation in the eastern Pacific 
(Nuijens et al., 2009). The PE increase realized in both model groups (Figures 2a and 2b) is an avenue for future 
work. Interestingly, we find that PE change is proportional to mean PE in CMIP6 models (Figure S11 in Support-
ing Information S1).

Convective clouds becoming more efficient at precipitating is coupled to Walker circulation slowdown in a 
warmer atmosphere. Simultaneously, powerful positive cloud feedbacks proportional to the PE increase emerge 
in the western and eastern Pacific. In the Indo-Pacific warm pool, there is contraction and thinning of high 
clouds. Simultaneously, reduced subsidence triggers stratocumulus suppression which warms underlying SSTs, 
further weakening stratocumulus decks. The dampened equatorial wind stress associated with enhanced Walker 
circulation slowdown reduces oceanic upwelling in the EP, which further adds to SST increases and thus the local 
stratocumulus suppression. Coupling between the Walker circulation slowdown and SST enhances the eastern 
equatorial Pacific warming pattern. Together, the coupled tropical Pacific cloud feedbacks are positive, causing 
high climate sensitivity (ECS > 4 K) in state-of-the-art GCMs. Thus, we have shown that changes in the precip-
itation efficiency of deep convective clouds controls tropical cloud feedback via the rates of tropical circulation 
slowdown and are important for constraining both global levels and spatial patterns of climate change.

Data Availability Statement
The RCEMIP (Wing et  al.,  2020) data used in this study is available at https://swiftbrowser.dkrz.de/public/
dkrz_70a517a8-039d-4a1b-a30d-841923f8bc7a/RCEMIP/. The CMIP6 data supporting this study are available 
from https://pcmdi.llnl.gov/CMIP6/. Data from the CRM experiments and satellite-derived observations of ϵ 
have been made publicly available at https://doi.org/10.5061/dryad.cc2fqz68d. TRMM data are obtained from 
https://gpm.nasa.gov/missions/trmm and are interpolated from their native 0.25° by 0.25° resolution to 1° by 1° to 
match that of the MODIS monthly data available at https://atmosphere-imager.gsfc.nasa.gov/products/monthly.
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